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A Short Synthesis of (f)-Isosteganel 

Summary: (f)-Isostegane has been prepared in a three-step 
sequence utilizing sequential substitution of the p and CY po- 
sitions of an electron-deficient olefin followed by nonphenolic 
oxidative coupling. 

Sir: Kupchan and coworkers recently described an unusual 
and highly cytotoxic class of dibenzocyclooctadiene lactones 
exemplified by the ketone lactone steganone ( 1).2 Two total 
syntheses of 1 have been reported and another group has de- 
scribed synthetic efforts in this area.3 Our retro-synthetic 
analysis of 1 suggested that the dibenzocyclooctadiene skel- 
eton might be efficiently constructed by sequential substi- 
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tution of the p and CY positions of an electron-deficient olefin 
using a conjugate addition alkylation sequence followed by 
nonphenolic oxidative coupling to yield a tetracyclic deben- 
zocyclooctadiene s t r ~ c t u r e . ~  Herein, we wish to describe a 
three-step construction of isostegane (2)l which demonstrates 
the validity of this strategy and which proceeds in 55% overall 
yield. 

Compound 2 was prepared in the following manner. The carbonyl 
anion equivalent 3 was generated from piperonal dithiomethyl acetal6 
(1 equiv, 1 M in THF, -78 "C) by treatment with n-butyllithium (1 
equiv). After stirring for 40 min at  -78"C, the butenolide 46 (1 equiv, 
1 M in THF) was slowly added over a period of 30 min. The resulting 
white suspension was stirred for 3 h a t  -78 "C whereupon the bromide 
57 (1 equiv, 1 M in THF) was rapidly added followed immediately by 
tetramethylethylenediamine (1 equiv).8 The temperature of the re- 
action mixture was then raised to -20 "C and stirring continued for 
10 to 12 h. Standard workup gave the adduct 6 as an amorphous yellow 
solid in 99% crude yield.$ Without purification, adduct 6 (2.5 g) was 
treated with a suspension of W-4 Raney Nickel (25 g) in acetone (100 
ml) at  reflux for 30 min. Vacuum filtration of the crude desulfurized 
product through silica gel gave compound 7 as a clear oil in 85% overall 
yield from 3. 

Cyclization of 7 into 2 was accomplished by slowly adding (10 min) 
compound 7 (1 equiv, 0.02 M in methylene chloride) to VOF3 (3 
equiv.) suspended in a 2:l  mixture of methylene chloride and triflu- 
oroacetic acid (0.16 M) at  -45 "C.IO The reaction mixture was stirred 
at  -45 "C for 7 h and then worked up by addition of saturated sodium 
carbonate solution. The crude dark yellow product was purified by 
vacuum filtration through silica gel followed by crystallization from 
chloroform-methanol to give pure isostegane (mp 172-172.5 "C) as 
the sole reaction product in 65 to 70% yield.ll 

The spectral characteristics of compound 2 (uv, ir, NMR, and mass 
spectrum) clearly indicated it to be a tetracyclic dibenzocycloocta- 
diene lactone. However, the stereochemical configuration of 2 could 
not be assigned from these data. As a result, the bromide 8 was pre- 
pared12 and an x-ray structure determination undertaken. 

The crystals of compound 8 were monoclinic, space group P21/a, 
with a = 22.699 (9), b = 7.433 (6), c = 11.984 (5) A; p = 95.16 (2)" and 
dcalcd = 1.574 g cm-1 for 2 = 4. The intensity data were measured on 
a Hilger-Watts diffractometer (Ni filter Cu Ka radiation, 0-20 scans, 

Figure 1. 



Communications J .  Org. Chem., Vol. 41, No. 23, 1976 3773 

7 

CH@. 3 

CHBO Q I .  

CH30 -4 
7 0  

CH3d 6,X = SCH, 
5 

J 
7,X= H 

OCH3 
9 

% Y 

CHBO CH$>o M 0 CHBO CH@io .C 0 

X 
CHBO CH30 

10 
2,X- H 
8,X = Br 

pulse height discrimination). T h e  size o f  the crystal used for  data 
collection was approximately 00.2 X 0.25 X 0.30 mm; the data were 
corrected for  absorption ( p  = 34.5 cm-'). Of the 2706 independent 
reflections w i t h  0 < 5 7 O ,  1859 were considered t o  be observed. T h e  
structure was solved by a mul t ip le  solut ion procedure13 and was re- 
f ined by full matr ix  least squares. In the Einal refinement, adisotropic 
thermal  parameters were used for  the  heavier atoms and isotropic 
temperature factors were used for the hydrogen atoms. The hydrogen 
atoms were included in the structure factor calculations but the i r  
paaameters were n o t  refined. T h e  f ina l  discrepancy indices are R = 
0.059 and wR = 0.056 fo r  the  1859 observed reflections. T h e  f ina l  
difference m a p  has n o  peaks greater than f0 .4 e A-3. T h e  computer 
drawing o f  compound 8 (Figure 1) clearly indicates t h a t  8, and 
therefore compound 2, possess the  unnatura l  b iphenyl  configura- 
tion.'4 

The exclusive formation of 2 as opposed to compound 10 
(the natural biphenyl configuration) must occur during the 
VOF3 cyclization of compound 7. One possible explanation 
for this stereochemical result involves the intermediacy of the 
spirodiene 9.15 Phenyl migration in 9 via path a leads to ste- 
gane (10) whereas phenyl migration via path b gives rise to 
isostegane (2). Inspection of molecular models indicate path 
b is considerably more favored on the basis of configurational 
interactions than is path a.16 
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Anhydrocholine 

Summary: Choline, (CH3)3N+CHzCHzOH OH-, was found 
to exist in water-poor media mainly in the form of anhydro- 
choline, (CH~)N+CHZCHZO-, 

Sir: A characteristic feature of enzyme systems appears to be 
the existence of highly reactive regions on the enzyme surface. 
In these regions acidic or basic groups often function as if their 
pK's were much greater (or smaller) than they are in aqueous 
so1ution.l I t  is likewise possible that some small biomolecules 
might be particularly susceptible to such changes in acidity, 
either on an enzyme surface or in some other cellular envi- 
.ronment, and that this variability might be a vital part of their 
function. 

The effect of polar, water-poor mixed solvents on the 
binding of various substrates to an enzyme cavity model has 
been reported recently.2 We wish to report a remarkable 


